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A. Notations

Symbol Meaning Notes / Space

{It}Tt=1 Input frame sequence RGB / RGB-D
K Camera intrinsics Known or estimated
Tw
c Camera pose in world frame SE(3); often (Rwc, twc)

Π(·) Pinhole projection operator 3D → pixel coordinates
ht Hand state at time t (θh(t), R

w
h (t), t

w
h (t))

θh(t) Hand(MANO) parameters Joint angles
Rw

h (t), t
w
h (t) Wrist pose in world (rot/trans) SO(3) and R3

pt Object state at time t Tw
o (t) ∈ SE(3)

Tw
o (t) = (Ro(t), to(t)) Object pose in world (rot/trans) SE(3)

Mo, M̂o Object mesh (metric / up-to-scale) Triangle mesh + texture
so Object scale factor From depth–mesh alignment
mt, Dt Object mask and depth map at t Segmentation and depth
Pt, P Back-projected points (per-frame / global) From Dt and K
AABB(·) Axis-aligned bounding box Use diagonal via diag(·)
A Canonical action space Unified by C2W and facing origin
TA
w = (Rw→A, tw→A) World-to-action-space transform Coordinate re-alignment

∆2(·) Second-order temporal difference Jitter suppression
ρ(·) Robust loss (e.g., Geman–McClure) For reprojection errors
d(·, ·) Point–set / point–surface distance For proximity/attraction
Vh, Vo Hand mesh vertices / object surface points Geometry sets
ϕh(x; t) Hand signed distance field (SDF) Positive outside (as used here)
TSDFo object truncated signed distance function negative inside and zero else
q̃i(t) World coords of sampled object surface pointRo(t)q

loc
i + to(t)

Nt Near-contact candidate set |ϕh| < τband or Top-K
∥ · ∥F Frobenius norm For rotation log etc.
logSO(3)(·) Lie-group log map on SO(3) Rotation discrepancy
dSE(3)(·, ·) Geodesic distance on SE(3) Pose discrepancy
Eπ[·] Expectation under policy π RL objective
rt Instantaneous reward Weighted components
ψlimits(·) Joint-limit margin reward Prefer mid-range
πθ Residual policy network Added to aIK

Trel(t) Relative pose T−1
h (t)To(t) Hand–object relative pose

Rg, pg Gripper pose (rot/trans) From hand keypoints
q
(r)
t Joint configuration of robot r at t From bounded-rate IK
ϕlim(q) Joint-limit penalty IK constraint term
S = diag(−1, 1, 1) Left–right mirror matrix About sagittal plane
Ry(π) Rotation about y by π Used with S to set facing
φsem(·) Semantic embedding (text–shape) For semantic similarity
γt Discount factor power RL return discounting
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Figure 9. Our pipeline decouples the reconstructed hand-object motions from the specific camera viewpoint of the source video. We first
lift the reconstructions to a consistent world frame using the camera-to-world transformation Tc2w. Subsequently, we normalize these
trajectories into a canonical action space via Tw2A. This two-step alignment ensures that the retargeted actions maintain a consistent
approach direction and kinematic interpretation across all robotic embodiments.

B. Transform to Canonical Action Space
Real-world HOI videos are captured under arbitrary viewpoints, which leads to view-dependent reconstructions of both hand
and object. To eliminate this inconsistency, we adopt a lifting procedure, as shown in Fig. 9. In the first step, all reconstructed
HOI results are transformed from their respective camera coordinate systems into the same world coordinate system. In the
second step, the trajectories in the world coordinate system are further normalized into a unified canonical action space,
ensuring that interaction trajectories from heterogeneous sources become retargetable.

Step 1: Estimate (K,Tw
c ) and lift to the world frame. We assume a static-camera prior and estimate camera intrinsics K

and a (time-invariant) camera-to-world transform Tw
c = (Rwc, twc) with DROID-SLAM [34], optimizing sparse/semi-dense

reprojection together with temporal smoothness:

min
K,Tw

c

∑
t,i

∥∥Π(K, (Tw
c )−1;Xi

)
− ui,t

∥∥2
2

+ λ
(
∥∆twc∥22 +

∥∥ logSO(3)(R
⊤
wcR

+
wc)

∥∥2
2

)
,

(6)

where (·)+ denotes the next keyframe. We adopt the keyframe solution as the clipwise Tw
c . We also evaluated DPVO and

COLMAP but found DROID-SLAM more stable on our setting. With the fixed Tw
c for each clip, we could project our

estimated ht,pt convert to the world frame:
Step 2: Align to canonical action space A. Given the left/right hip and shoulder positions p

L/R
hip , p

L/R
sho in the world

coordinate system {Z}, we first compute a lateral reference vector on the xz-plane:

vlat = Πxz

(
(pLhip − pRhip) + (pLsho − pRsho)

)
.

We then construct the canonical frame A with the following conventions:
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• zA is aligned with the scene up direction (gravity / ground normal).
• yA is determined by the dominant interaction direction (e.g., the average hand→object approach vector).
• xA is obtained by the right-hand rule, ensuring orthonormality.

After orthonormalization, these axes form the rotation matrix Rw→A ∈ SO(3). Finally, we center the action trajectory at
the object position (by default, at the first salient frame t0), giving the translation tw→A = −Rw→A two (t0) and the resulting
rigid transformation TA

w = (Rw→A, tw→A).

C. Hand Gesture to Robot Arm
C.1. Mapping Algorithm
For the two different gesture types, whole-hand and finger-only, we designed corresponding mapping schemes to translate
hand motions to a two-fingered gripper. For whole-hand gestures, our method primarily leverages 3d joints on the palm
plane to define the gripper’s orientation and spatial position. For finger-only gestures, we incorporate fingertip positions to
accommodate dexterous manipulation. The detailed mapping algorithm pseudocode under two gestures is shown in Fig. 10.

Algorithm 1 Whole-Hand (Palm-Involved) Gripper Pose
Construction
Input: wrist kwri, index MCP kmcp

ind ,
ring MCP kmcp

ring

Output: Gripper pose (Rg,pg).

w←kwri, i←kmcp
ind , r←kmcp

ring

// Extract keypoints
o← (w + i+ r)/3 // palm origin
vx ← (r−w) // X-axis direction
x̄← vx/(NORMALIZE(vx) + 10−8)

// Normalized X-axis
vz ← CROSS PRODUCT(i−w, r−w)

// Z-axis (palm normal)
z̄← vz/(NORMALIZE(vz) + 10−8)

// Normalized Z-axis
ȳ← CROSS PRODUCT(z̄, x̄)

// Y-axis direction
z̄← SIGN(⋄) · z̄
Rg ← CONCATENATE([x̄, ȳ, z̄])

// Rotation matrix
pg ← o+ dz z̄ // Position

Return (Rg,pg)

Algorithm 2 Finger-Only (Pinch/Precision) Gripper Pose
Construction
Input: index TIP ktip

ind, index MCP kmcp
index , thumb tip

ktip
thumb, thumb MCP kmcp

thumb

Output: Gripper pose (Rg,pg).

i←ktip
ind, m←kmcp

ind , t←ktip
thumb, r←kmcp

thumb

// Extract keypoints
o← (t+ i)/2 // palm origin
vz ← (i−m) // Z-axis direction
z̄← vz/(NORMALIZE(vz) + 10−8)

// Normalized Z-axis
vy ← CROSS PRODUCT(i−m, m− r)

// Y-axis (palm normal)
ȳ← vy/(NORMALIZE(vy) + 10−8)

// Normalized Y-axis
x̄← CROSS PRODUCT(ȳ, z̄)

// X-axis direction
z̄← SIGN(⋄) · z̄
Rg ← CONCATENATE([x̄, ȳ, z̄])

// Rotation matrix
pg ← o // Position

Return (Rg,pg)

Figure 10. Following our gesture classification scheme, we divide grasping into two categories and combine them into the final two-finger
gripper pose based on the hand joint space orientation.

C.2. Replay Comparison with Different Methods
Replay Comparison by Different Methods: We compared the mapping method of RoboWheel with YOTO and GAT-Grasp.
YOTO and GAT-Grasp result in discrepancies in gripper position or orientation mapping, leading to failure, while RoboWheel
provides more accurate and reasonable mapping,as shown in Fig. 11.

C.3. Cross-Arm Retargeting Performance
In Tab. 5, we report the real-world SR of different mapping methods on UR5. To further assess the generalization and
scalability of our approach, we deploy the same mapping algorithm across multiple manipulators (UR5, Gen3, iiwa7, Sawyer,
and Franka) in simulation. As shown in Tab. 6, our method achieves consistently high performance on all arms, with SR
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Ours

GAT-Grasp

YOTO

Figure 11. Replay Comparison by Different Methods: We compared the mapping method of RoboWheel with YOTO and GAT-Grasp.
YOTO and GAT-Grasp result in discrepancies in gripper position or orientation mapping, leading to failure, while RoboWheel provides
more accurate and reasonable mapping.

Task UR5 Gen3 iiwa7 Sawyer Franka

flip milk 10/10 (100%) 10/10 (100%) 7/10 (70%) 10/10 (100%) 7/10 (70%)
place milk 10/10 (100%) 10/10 (100%) 10/10 (100%) 10/10 (100%) 10/10 (100%)
pour cola 10/10 (100%) 10/10 (100%) 10/10 (100%) 10/10 (100%) 10/10 (100%)

Table 6. Scaled success rates for 10 trials per task using the same retarget method.

remaining stable despite differences in kinematics and embodiments. This indicates that the proposed mapping is robust and
scalable for cross-embodiment transfer.
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D. Experiment Details
We used the HORA to train four VLA/IL policies, namely ACT, DP, RDT-1B, and Pi0, to validate the effectiveness of our
data. Before training these models, we preprocessed the data into the format of observations, actions, and instructions (if
required) for model training.

D.1. Implementation and Hyper-Parameters of VLA/IL policies
For ACT, we trained each task for 20,000 iterations, with 90% of the data used for training and the remaining 10% for valida-
tion. When training DP, we kept the same training steps, learning rate, and chunk size as ACT. The specific hyperparameter
values are listed in Tab. 7.

ACT DP

Hyperparameter Value Hyperparameter Value

Chunk size 16 Chunk size 16
Hidden dim 512 Action horizon 8
Batch size 16 Batch size 16
Learning rate 1e-5 Learning rate 1e-5
Dim feedforward 3200 Observation horizon 8
Training steps 20000 Training steps 20000

Table 7. Hyperparameters used to train ACT and DP.

RDT was pretrained for 100,000 steps with a batch size of 8 per GPU on 4 GPUs, and all single-task fine-tuning was
conducted for 10,000 steps with a batch size of 8 per GPU on a single GPUs. Pi0 was pretrained for 100,000 steps with a
batch size of 32 on 8 GPUs, and all fine-tuning was performed for 30,000 steps using the same batch size on a single GPU.

All remaining hyperparameters for RDT and Pi0 were set according to their official documentation.

D.2. Training HORA on Maniptrans
We mapped the hand gestures onto the dexterous hands and completed the training in a simulation environment. The training
outcomes are shown in Fig. 12.

xhand

inspire

Figure 12. Visualization results of maniptrans

D.3. Real-world Validation Results
Here, we present the experimental results for all designed tasks conducted on physical robot(UR5),as shown in Fig. 13.
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Upright milk

Pick up milk

Lift wooden 
cup

Move banana

Store bowl

Place milk

Pour cola

Tip teacup

Figure 13. Visualization of eight tasks on real robot
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E. Dataset Details

We construct a large-scale dataset (HORA) with three subsets: HORA-Mocap (multi-view mocap with tactile gloves), HORA-
Recordings (in-house RGB(D) recordings without tactile), and HORA-Public (retargeted public HOI datasets).

E.1. HORA Mocap Handware Setup
Glove The glove is instrumented with 16 Gen3 tactile sensors and 29 magnetic encoders. Worn on a single hand, it enables
the acquisition of high-frequency tactile data. The tactile sensors are capable of detecting pressure, force, and vibration,
while the magnetic encoders are used to capture precise joint angles and movements of the fingers. This combination allows
for detailed hand-object interaction data to be gathered with high temporal resolution. Visualization of the Mocap Hardware
setup and gloves in simulation is shown as Fig. 14.

Figure 14. Visualization of the Mocap Hardware setup and gloves in simulation.

RGBD Cameras Three Intel RealSense D455 RGBD cameras are used to capture depth and RGB data simultaneously.
The cameras are mounted at strategic locations to ensure optimal coverage and accurate 3D spatial data. The depth cam-
eras provide high-resolution depth maps, while the RGB cameras offer high-quality color images. For synchronized data
acquisition, a synchronization cable is employed, connecting three cameras to ensure precise temporal alignment across all
devices.

RGB Cameras A total of eight high-resolution RGB cameras are used for detailed visual tracking. These cameras are
positioned to cover different angles, enabling comprehensive capture of the environment and subjects. The cameras are used
to provide complementary visual data to the depth information provided by the RGBD cameras.

E.2. From Glove Fitting to MANO Parameters
We retarget glove-based kinematic fits to the MANO hand model through a unified differentiable optimization. Both the
glove and MANO use differentiable forward kinematics (FK), allowing a smooth transition that preserves global pose and
local contact geometry.

Glove-domain fitting. We first calibrate the glove using multi-view constraints. To ensure consistent correspondence, we
define: (i) a link-level mapping between glove joints and MANO joints, and (ii) tactile sensor points assigned to glove links.
Contact constraints are activated only for links with nonzero force. If a link has no force, its position/normal constraints
are disabled. For links under force, we apply force-aware weights: strong-force sensor points have weight 1.0, while other
activated points have weight 0.3. The glove fitting objective is

Lglove = Lcontact + Lwrist + Ljlim + Lsmooth + Lanat, (7)

where Lcontact aligns positions and normals at tactile points, Lwrist constrains the wrist pose, Ljlim penalizes joint-limit vi-
olations, Lsmooth enforces temporal smoothness, and Lanat regularizes anatomical plausibility. All frames are optimized in
parallel. To handle wrist floating, we prepend a free 6-DoF transform before the glove wrist base.

Retargeting initialization. The optimized glove motion is used to initialize MANO. We copy the glove global wrist trans-
form (including the 6-DoF floating pose) to MANO’s root pose, and map each glove joint rotation to its corresponding
MANO joint using the predefined correspondence. This yields an initial MANO pose close to the contact-consistent glove
fit.
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MANO refinement. Starting from the retargeted initialization, we refine MANO parameters under the same constraints,
now expressed on MANO joints/vertices. MANO pose is parameterized by 16 articulated joints, each with 3-DoF axis-angle
rotations, i.e.,

θ ∈ R16×3, (8)

together with a global wrist pose. We minimize

Lmano = Lcontact + Lwrist + Ljlim + Lsmooth + Lanat, (9)

using the same force-aware contact weights transferred from glove links. This refinement produces anatomically valid MANO
poses while preserving tactile interaction geometry.

E.3. Task Description for HORA

The HORA-Mocap subset is designed to provide a compact yet diverse set of everyday household manipulation skills captured
with high-fidelity motion tracking. We curate tasks that range from simple, atomic primitives (e.g., pick-and-place, pressing,
pouring, inserting, and opening/closing) to mid- and long-horizon activities that require multi-step coordination and object-
centric reasoning (e.g., pouring water into a cup, storing blocks, tabletop cleaning, tong-based picking, and bulb installation).
To reflect realistic human hand usage, the task taxonomy is simplified into one-handed and two-handed categories, covering
both single-handed interactions and cooperative bimanual behaviors such as rotating a cap, folding clothes, scanning items,
and table setting. For detailed task descriptions and visualization, please refer to the Tab.8 and Fig.15. The resulting task
suite offers a structured benchmark for learning and evaluating dexterous manipulation policies under varied object types,
action primitives, and temporal horizons.

# Task type Primitive / skill Manipulated objects Task description

1 One-handed pick&place Coconut water bottle (350 ml) Pick up and place the object.
2 One-handed pick&place Black marker Pick up and place the object.
3 One-handed pick&place Lidded ceramic mug (white) Pick up and place the object.
4 One-handed pick&place Claw hammer Pick up and place the object.
5 One-handed press Remote control Press buttons on the remote control.
6 One-handed pour Kettle Pick up the kettle and perform a pouring motion.
7 One-handed insert Gel pen + pen holder Insert the pen into the pen holder.
8 One-handed open–close Tea gift box Open the tea gift box and then close it.
9 One-handed pouring water Kettle + cup Place the cup at a fixed position, pick up the kettle to

pour water, put down the kettle, then deliver the cup
to a target position.

10 One-handed block storage Blocks + block box Store blocks of different shapes into the block box.
11 One-handed tabletop wiping Cleaning sponge Hold the sponge and wipe the tabletop.
12 One-handed vacuum cleaning Handheld vacuum Use the handheld vacuum to clean the tabletop.
13 One-handed tong picking Baking tongs + bun-shaped object Use tongs to pick up the bun-shaped object.
14 One-handed bulb installation Light bulb + bulb socket Screw the light bulb into the socket.

15 Two-handed pick&place Large plate Pick up and place the object with both hands.
16 Two-handed pick&place Large juice bottle Pick up and place the object with both hands.
17 Two-handed rotate Bottle with cap Cooperatively unscrew the cap with both hands, then

re-tighten it.
18 Two-handed clothes folding T-shirt Fold the T-shirt and place it at a fixed position.
19 Two-handed item scanning Scanner gun + items to scan Pick up an item and scan it with the scanner gun.
20 Two-handed table setting Tableware set Set the table following Western-style table-setting

rules.

Table 8. HORA-Mocap subset task list.
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Figure 15. HORA-Mocap Overview,
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F. Data Augmentation

In this section, we present various data augmentation strategies and additional details applied to more tasks.

F.1. Cross-Embodiment

Here, we present additional results from the data augmentation module, demonstrating motion retargeting for HOI recon-
struction to different robotic arms. Fig. 16 and Fig. 17 show the retargeted motions for the tasks ”flip milk,” ”pour water,”
and ”place milk” to the UR5/UR5e, Franka Emika Panda, KUKA LBR iiwa 7, Kinova Gen3, and Rethink Robotics Sawyer
arms, respectively.

UR5

Franka

Gen3

Iiwa7

Sawyer

Flip milk

 

UR5

Franka

Gen3

Iiwa7

Sawye

Pour Cola

r

Figure 16. Visualization of robot arm augmentation:flip milk and pour Water
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Place milk

UR5

Franka

Gen3

Iiwa7

Sawyer

Figure 17. Visualization of robot arm augmentation:place milk

F.2. Background Variation
As shown in Fig. 18, we apply scene-level visual randomization to diversify the pixel distribution while keeping task dynam-
ics and contact semantics unchanged: i) workspace and background appearance randomization (e.g., tabletop, backsplash)
via texture and normal-map swaps, and adjustment of basic PBR parameters (albedo/roughness); ii) illumination randomized
using parametric light sources with variations in spatial placement, intensity, color, color temperature, and emission radius,
enabling a broad range of plausible lighting conditions; iii) clutter regime ranging from empty scenes to heavy distractors,
with randomly sampled object positions and orientations placed collision-free outside the robot’s swept volume via rejection
sampling; iv) mild camera intrinsics/extrinsics jitter consistent with prior calibration to emulate plausible view changes.

F.3. Object Retrival
Our object-retrieval augmentation strategy successfully enables the transfer of manipulation skills to novel objects in simu-
lation. By replacing the original object with a retrieved counterpart that shares high geometric and semantic similarity, and
initializing it in the same canonical pose, the robot can reliably execute the same action trajectory. Visually confirmed in
Fig. 19, Fig. 20, and Fig. 21 for tasks including ”pour water”, ”tip tea cup”, and ”place box”.

F.4. Hand Mirror
Motivation. Many daily manipulations are left–right symmetric up to a sagittal-plane reflection; mirroring increases trajec-
tory diversity without changing task semantics.

Operator. Let the sagittal reflection be S = diag(−1, 1, 1). For positions, p′(t) = S p(t). A pure reflection is improper
for orientations, so we compose a π-rotation about the y-axis to recover a proper rotation:

R′(t) = S R(t)S ·Ry(π), det
(
R′(t)

)
= +1. (10)

We mirror both hand and object about the same plane so that T ′
rel(t) = T ′

h(t)
−1T ′

o(t) = Trel(t), preserving contact frames
and approach vectors. Gripper chirality and finger-axis signs are flipped consistently.

Safeguards. We exclude actions whose handedness encodes semantics (e.g., threaded fasteners), detected via a non-zero
screw component about the task z-axis exceeding τscrew. Mirrored rollouts must pass the replay check on a reference arm
before inclusion.
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Background
Variation

Object 
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Figure 18. Diverse background texture augmentation in RoboWheel.
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Figure 19. Object Retrieval augmentation

Figure 20. Object Retrieval augmentation
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Figure 21. Object Retrieval augmentation
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